bevy_lint/lints/restriction/missing_reflect.rs
1//! Checks for components, resources, and events that do not implement `Reflect`.
2//!
3//! # Motivation
4//!
5//! Reflection lets programs inspect type information at runtime. It is commonly used by tools to
6//! view and edit ECS information while the program is running. Reflection is opt-in, however, and
7//! easy to forget since you need to `#[derive(Reflect)]` for each type that uses it.
8//!
9//! # Known issues
10//!
11//! This lint will suggest `#[derive(Reflect)]` even if it cannot be applied. (E.g. if one of the
12//! fields does not implement `Reflect`.) For more information, please see [#141].
13//!
14//! [#141]: https://github.com/TheBevyFlock/bevy_cli/issues/141
15//!
16//! # Example
17//!
18//! ```
19//! # use bevy::prelude::*;
20//! #
21//! #[derive(Component)]
22//! struct MyComponent;
23//! ```
24//!
25//! Use instead:
26//!
27//! ```
28//! # use bevy::prelude::*;
29//! #
30//! // Remember to also register this component in the `App` type registry.
31//! #[derive(Component, Reflect)]
32//! struct MyComponent;
33//! ```
34//!
35//! Often you'll only want to enable this lint for a specific module:
36//!
37//! <!-- We currently ignore this doc test because any reference to `bevy_lint` causes it to be
38//! linked, which raises a compile error due to the linter's use of `rustc_private`. -->
39//!
40//! ```ignore
41//! mod types {
42//! #![cfg_attr(bevy_lint, warn(bevy::missing_reflect))]
43//! #
44//! # use bevy::prelude::*;
45//!
46//! #[derive(Resource, Reflect)]
47//! struct Score(u32);
48//!
49//! #[derive(Component, Reflect)]
50//! struct Happiness(i8);
51//! }
52//! ```
53//!
54//! For more information, please see [Toggling Lints in
55//! Code](../../index.html#toggling-lints-in-code).
56
57use crate::{declare_bevy_lint, declare_bevy_lint_pass};
58use clippy_utils::{def_path_res, diagnostics::span_lint_hir_and_then, sugg::DiagExt};
59use rustc_errors::Applicability;
60use rustc_hir::{
61 HirId, Item, ItemKind, Node, OwnerId, QPath, TyKind,
62 def::{DefKind, Res},
63};
64use rustc_lint::{LateContext, LateLintPass};
65use rustc_middle::ty::TyCtxt;
66use rustc_span::Span;
67
68declare_bevy_lint! {
69 pub MISSING_REFLECT,
70 super::RESTRICTION,
71 "defined a component, resource, or event without a `Reflect` implementation",
72 // We only override `check_crate()`.
73 @crate_level_only = true,
74}
75
76declare_bevy_lint_pass! {
77 pub MissingReflect => [MISSING_REFLECT.lint],
78}
79
80impl<'tcx> LateLintPass<'tcx> for MissingReflect {
81 fn check_crate(&mut self, cx: &LateContext<'tcx>) {
82 // Finds all types that implement `Reflect` in this crate.
83 let reflected: Vec<TraitType> =
84 TraitType::from_local_crate(cx.tcx, &crate::paths::REFLECT).collect();
85
86 // Finds all non-`Reflect` types that implement `Event` in this crate.
87 let events: Vec<TraitType> = TraitType::from_local_crate(cx.tcx, &crate::paths::EVENT)
88 .filter(|trait_type| !reflected.contains(trait_type))
89 .collect();
90
91 // Finds all non-`Reflect` types that implement `Component` and *not* `Event` in this
92 // crate. Because events are also components, we need to deduplicate the two to avoid
93 // emitting multiple diagnostics for the same type.
94 let components: Vec<TraitType> =
95 TraitType::from_local_crate(cx.tcx, &crate::paths::COMPONENT)
96 .filter(|trait_type| {
97 !(reflected.contains(trait_type) || events.contains(trait_type))
98 })
99 .collect();
100
101 // Finds all non-`Reflect` types that implement `Resource` in this crate.
102 let resources: Vec<TraitType> =
103 TraitType::from_local_crate(cx.tcx, &crate::paths::RESOURCE)
104 .filter(|trait_type| !reflected.contains(trait_type))
105 .collect();
106
107 // Emit diagnostics for each of these types.
108 for (checked_trait, trait_name, message_phrase) in [
109 (events, "Event", "an event"),
110 (components, "Component", "a component"),
111 (resources, "Resource", "a resource"),
112 ] {
113 for without_reflect in checked_trait {
114 // Skip if a types originates from a foreign crate's macro
115 if without_reflect
116 .item_span
117 .in_external_macro(cx.tcx.sess.source_map())
118 {
119 continue;
120 }
121
122 span_lint_hir_and_then(
123 cx,
124 MISSING_REFLECT.lint,
125 // This tells `rustc` where to search for `#[allow(...)]` attributes.
126 without_reflect.hir_id,
127 without_reflect.item_span,
128 format!("defined {message_phrase} without a `Reflect` implementation"),
129 |diag| {
130 diag.span_note(
131 without_reflect.impl_span,
132 format!("`{trait_name}` implemented here"),
133 )
134 .suggest_item_with_attr(
135 cx,
136 without_reflect.item_span,
137 "`Reflect` can be automatically derived",
138 "#[derive(Reflect)]",
139 // This can usually be automatically applied by `rustfix` without
140 // issues, unless one of the fields of the struct does not
141 // implement `Reflect` (see #141).
142 // This suggestion may result in two consecutive
143 // `#[derive(...)]` attributes, but `rustfmt` merges them
144 // afterwards.
145 Applicability::MaybeIncorrect,
146 );
147 },
148 );
149 }
150 }
151 }
152}
153
154/// Represents a type that implements a specific trait.
155#[derive(Debug)]
156struct TraitType {
157 /// The [`HirId`] pointing to the type item declaration.
158 hir_id: HirId,
159 /// The span where the type was declared.
160 item_span: Span,
161 /// The span where the trait was implemented.
162 impl_span: Span,
163}
164
165impl TraitType {
166 fn from_local_crate<'tcx>(
167 tcx: TyCtxt<'tcx>,
168 trait_path: &[&str],
169 ) -> impl Iterator<Item = Self> + use<'tcx> {
170 // Find the `DefId` of the trait. There may be multiple if there are multiple versions of
171 // the same crate.
172 let trait_def_ids = def_path_res(tcx, trait_path)
173 .into_iter()
174 .filter_map(|res| match res {
175 Res::Def(DefKind::Trait, def_id) => Some(def_id),
176 _ => None,
177 });
178
179 // Find a map of all trait `impl` items within the current crate. The key is the `DefId` of
180 // the trait, and the value is a `Vec<LocalDefId>` for all `impl` items.
181 let all_trait_impls = tcx.all_local_trait_impls(());
182
183 // Find all `impl` items for the specific trait.
184 let trait_impls = trait_def_ids
185 .filter_map(|def_id| all_trait_impls.get(&def_id))
186 .flatten()
187 .copied();
188
189 // Map the `DefId`s of `impl` items to `TraitType`s. Sometimes this conversion can fail, so
190 // we use `filter_map()` to skip errors.
191 trait_impls.filter_map(move |local_def_id| {
192 // Retrieve the node of the `impl` item from its `DefId`.
193 let node = tcx.hir_node_by_def_id(local_def_id);
194
195 // Verify that it's an `impl` item and not something else.
196 let Node::Item(Item {
197 kind: ItemKind::Impl(impl_),
198 span: impl_span,
199 ..
200 }) = node
201 else {
202 return None;
203 };
204
205 // Find where `T` in `impl T` was originally defined, after peeling away all references
206 // `&`. This was adapted from `clippy_utils::path_res()` in order to avoid passing
207 // `LateContext` to this function.
208 let def_id = match impl_.self_ty.peel_refs().kind {
209 TyKind::Path(QPath::Resolved(_, path)) => path.res.opt_def_id()?,
210 _ => return None,
211 };
212
213 // Tries to convert the `DefId` to a `LocalDefId`, exiting early if it cannot be done.
214 // This will only work if `T` in `impl T` is defined within the same crate.
215 //
216 // In most cases this will succeed due to Rust's orphan rule, but it notably fails
217 // within `bevy_reflect` itself, since that crate implements `Reflect` for `std` types
218 // such as `String`.
219 let local_def_id = def_id.as_local()?;
220
221 // Find the `HirId` from the `LocalDefId`. This is like a `DefId`, but with further
222 // constraints on what it can represent.
223 let hir_id = OwnerId {
224 def_id: local_def_id,
225 }
226 .into();
227
228 // Find the span where the type was declared. This is guaranteed to be an item, so we
229 // can safely call `expect_item()` without it panicking.
230 let item_span = tcx.hir_node(hir_id).expect_item().span;
231
232 Some(TraitType {
233 hir_id,
234 item_span,
235 impl_span: *impl_span,
236 })
237 })
238 }
239}
240
241/// A custom equality implementation that just checks the [`HirId`] of the [`TraitType`], and skips
242/// the other values.
243///
244/// [`TraitType`]s with equal [`HirId`]s are guaranteed to be equal in all other fields, so this
245/// takes advantage of that fact.
246impl PartialEq for TraitType {
247 fn eq(&self, other: &Self) -> bool {
248 self.hir_id == other.hir_id
249 }
250}